Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 467: 133685, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38335604

RESUMEN

Marine sediments polluted from anthropogenic activities can be major reservoirs of toxic mercury species. Some microorganisms in these environments have the capacity to detoxify these pollutants, by using the mer operon. In this study, we characterized microbial cultures isolated from polluted marine sediments growing under diverse environmental conditions of salinity, oxygen availability and mercury tolerance. Specific growth rates and percentage of mercury removal were measured in batch cultures for a selection of isolates. A culture affiliated with Pseudomonas putida (MERCC_1942), which contained a mer operon as well as other genes related to metal resistances, was selected as the best candidate for mercury elimination. In order to optimize mercury detoxification conditions for strain MERCC_1942 in continuous culture, three different dilution rates were tested in bioreactors until the cultures achieved steady state, and they were subsequently exposed to a mercury spike; after 24 h, strain MERCC_1942 removed up to 76% of the total mercury. Moreover, when adapted to high growth rates in bioreactors, this strain exhibited the highest specific mercury detoxification rates. Finally, an immobilization protocol using the sol-gel technology was optimized. These results highlight that some sediment bacteria show capacity to detoxify mercury and could be used for bioremediation applications.


Asunto(s)
Contaminantes Ambientales , Mercurio , Mercurio/toxicidad , Mercurio/análisis , Bacterias/genética , Reactores Biológicos
2.
Sci Rep ; 12(1): 15935, 2022 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-36153418

RESUMEN

In the early stages after larval settlement, coral spat can be rapidly overgrown and outcompeted by algae, reducing overall survival for coral reef replenishment and supply for restoration programs. Here we investigated three antifouling (AF) coatings for their ability to inhibit algal fouling on coral settlement plugs, a commonly-used restoration substrate. Plugs were either fully or partially coated with the AF coatings and incubated in mesocosm systems with partial recirculation for 37 days to track fouling succession. In addition, settlement of Acropora tenuis larvae was measured to determine whether AF coatings were a settlement deterrent. Uncoated control plugs became heavily fouled, yielding only 4-8% bare substrate on upper surfaces after 37 days. During this period, an encapsulated dichlorooctylisothiazolinone (DCOIT)-coating was most effective in reducing fouling, yielding 61-63% bare substrate. Antiadhesive and cerium dioxide (CeO2-x) nanoparticle (NP) coatings were less effective, yielding 11-17% and 2% bare substrate, respectively. Average settlement of A. tenuis larvae on the three types of AF-coated plugs did not statistically differ from settlement on uncoated controls. However, settlement on the NP-coating was generally the highest and was significantly higher than settlement found on the antiadhesive- and DCOIT-coating. Furthermore, on plugs only partially-covered with AF coatings, larval settlement on coated NP- areas was significantly higher than settlement on coated antiadhesive- and DCOIT-areas. These results demonstrate that AF coatings can reduce fouling intensity on biologically-relevant timescales while preserving robust levels of coral settlement. This represents an important step towards reducing fine-scale competition with benthic fouling organisms in coral breeding and propagation.


Asunto(s)
Antozoos , Incrustaciones Biológicas , Animales , Incrustaciones Biológicas/prevención & control , Arrecifes de Coral , Larva
3.
J Mater Chem B ; 2(45): 7896-7909, 2014 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-32262079

RESUMEN

Thin layers and patterned dot arrays of sodium alginate containing living microalgal cells were deposited onto glass carriers which were subsequently gelled using amino-functionalized silica sol to obtain reinforced alginate hydrogels. The resulting alginate/silica hybrid materials showed improved stability in salt-containing solutions compared to alginate gels gelled by traditional methods using Ca2+-ions. Cell arrays were patterned by printing nanolitre-scale drops of sodium alginate/cell suspension using a non-contact micro-dosage system which allows the printing of solutions of high viscosity. Cultures of the green microalga Chlorella vulgaris were immobilized within the newly developed alginate/silica hydrogels in order to demonstrate the potential of the hybrid matrix for the design of cell-based detection systems. The herbicide atrazine as well as copper ions have been used as model toxicants. Short-term toxicity tests (exposure time: 1 h) have been carried out using atrazine and changes in chlorophyll a (Chl a) fluorescence were measured by imaging pulse amplitude modulated-fluorometry (Imaging-PAM). C. vulgaris cells immobilized within alginate/silica hydrogels demonstrated a highly reproducible response pattern and compared well to freely suspended cells. Activity and response sensitivity of immobilized cells to atrazine was largely maintained for up to 8 weeks, especially when stored under cool conditions in the dark. Furthermore, immobilized cells could be repeatingly used for short-term toxicity tests as atrazine produces a reversible inhibition of photosynthesis.

4.
Appl Microbiol Biotechnol ; 93(4): 1755-67, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21800029

RESUMEN

Biofilters with long lifetime and high storage stability are very important for bioremediation processes to ensure the readiness at the occurrence of sudden contaminations. By using the freeze-gelation technique, living cells can be immobilized within a mechanically and chemically stable ceramic-like matrix. Due to a freeze-drying step, the embedded microorganisms are converted into a preserved form. In that way, they can be stored under dry conditions, which comply better with storage, transport, and handling requirements. Thus, in contrast to other immobilization techniques, there is no need for storage in liquid or under humid atmosphere. The biological activity, mechanical strength, and the structure of the biologically active ceramic-like composites (biocers) produced by freeze gelation have been investigated by using the phenol-degrading bacteria Rhodococcus ruber as model organism. Samples of freeze-gelation biocers have been investigated after defined storage periods, demonstrating nearly unchanged mechanical strength of the immobilization matrix as well as good storage stability of the activity of the immobilized cells over several months of storage at 4 °C. Repeated-batch tests demonstrated further that the freeze-gelation biocers can be repeatedly used over a period of more than 12 months without losing its bioactivity. Thus, these results show that freeze-gelation biocers have high potential of being scaled up from laboratory test systems to applications in real environment because of their long bioactivity as well as mechanical stability.


Asunto(s)
Células Inmovilizadas/metabolismo , Filtración/métodos , Geles , Rhodococcus/metabolismo , Liofilización , Fenol/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...